Seat No.: 908	
JH-101	
January-2024	
B.B.A., SemI	
MDC-BMT-114: Business Mathematics [Max. Mar.]	ks · 50
Time: 2 Hours]	K3 , 50
Instructions: (1) Figures on right indicate marks. (2) Use of simple calculator is allowed.	
	-
1. (A) Define the following terms with example:	5
(1) Infinite Set (2) Equal Sets (3) Disjoint Set	
(4) Venn-Diagram (5) Complement of a Set (B) If $A = \{-3, -2, -1, 0, 1, 2, 3\}$, $B = \{1, 2\}$, $C = \{-1, 0, 1\}$ then	5
(B) If $A = \{-3, -2, -1, 0, 1, 2, 3\}$, $B = \{1, 2\}$, $C = \{-1, 0, 1\}$ then Verify $A \times (B \cap C) = (A \times B) \cap (A \times C)$	
OR	
1. (A) If	
$U = \{a, b, c, d, e, f, g\};$	
$A = \{a, b, c, d, e, f\};$	
$B = \{a, b, c, d, e\};$	
$C = \{b, c, d, e, f\},\$ Verify that $(A \cup B) \cap B = A \cap B'$	5
(B) In a class, 85 soments saw at least one of the three movies ANIMAL, RRR	and
PUSHPA. The number of students who watched all these three movies are said	me.
20 students watched both ANIMAL and RRR, 25 students watched both RRR	and
PUSHPA and 35 students watched both PUSHPA and ANIMAL. The number of students watched by the purples of students watched both PUSHPA and ANIMAL.	
students who watched all the three movies are 15. Find the number of stude who watched each of the three movies.	5
who watched each of the three movies.	
$x^2 + 3x + 9$	5
2. (A) Obtain $\lim_{x \to 2} \frac{x^2 + 3x + 9}{x^2 + 9x + 3}$	3
(B) The daily cost of production for 'x' units is given by $C(x) = 15x + 600$, if i	t is
known that 200 units can be sold daily, what price per unit should be charged	
guarantee no loss ? OR	5
2. (A) Obtain $\lim_{x \to \infty} \left(1 + \frac{5}{x}\right)^{x}$	5
JH-101 1	P.T.O.

	(E	The fixed function is ₹ 80,000 and the variable cost per unit of production is ₹ 100. If the selling price per unit is ₹ 150, find cost function, revenue function, and break-even point.	
		and break-even point.	
3.	(A	If $y = e^{-6x} + e^{6x}$, prove that $\frac{d^2y}{dx^2} = 36y$.	4
	(B	If $y = e^{x} \cdot \log x$, find $\frac{dy}{dx}$.	
	(0)		5
	L	OR	
3.	(A)	If $y = xe^{2x}$, find $\frac{d^2y}{dx^2}$.	
	(B)	Using definition, find the derivative of $y = \sqrt{x}$	
4.	(A)	Find minimum value of $y = 6x^2 - 12x + 5$.	
	(B)		4
		OR	
4.	(A)	Prove that Elasticity of Demand $\eta = \frac{AR}{AR - MR}$.	5
	(B)	The demand of a monopolist is $p = 27 - x$ and $C(x) = 30 + 3x$; find maximum profit.	5
5.	Do	as directed: (any 10)	
	(1)	In set theory, $A \times B = B \times A$. (True/False)	0
	(2)	Show $A \cap B$ in Venn Diagram by shading it.	
	(3)	If A and B are disjoint sets then $n(A \cap B) = n(A) + n(B)$. (True/False)	
	(4)	$\lim_{x\to 0} a^x = 10^{-10}$	
	(5)	Σ n =	
	(6)	For $f(x) = 3x - 1$, $x \in \{1, 2, 3\}$, then range is	
	(7)	For $f(x) = 3x - 1$, $x \in \{1, 2, 3\}$, then range is If $y = \frac{1}{x}$; then $\frac{dy}{dx} = -x^{-2}$ (True/False)	
	(8)	Write multiplication rule of differentiation.	
	(9)	The cost of producing an extra unit at any level of production is called Marginal Cost. (True/False)	
		Stationary values are obtained by substituting $\frac{dy}{dx} = $	
	(11)	Derivative of any supply function is (positive/negative)	

JH-101

(12) Second derivative of any constant term is